S-type Anion Channels SLAC1 and SLAH3 Function as Essential Negative Regulators of Inward K+ Channels and Stomatal Opening in Arabidopsis.

نویسندگان

  • An Zhang
  • Hui-Min Ren
  • Yan-Qiu Tan
  • Guo-Ning Qi
  • Fen-Yong Yao
  • Gui-Li Wu
  • Lu-Wen Yang
  • Jamshaid Hussain
  • Shu-Jing Sun
  • Yong-Fei Wang
چکیده

Drought stress induces stomatal closure and inhibits stomatal opening simultaneously. However, the underlying molecular mechanism is still largely unknown. Here we show that S-type anion channels SLAC1 and SLAH3 mainly inhibit inward K+ (K+in) channel KAT1 by protein-protein interaction, and consequently prevent stomatal opening in Arabidopsis. Voltage-clamp results demonstrated that SLAC1 inhibited KAT1 dramatically, but did not inhibit KAT2. SLAH3 inhibited KAT1 to a weaker degree relative to SLAC1. Both the N terminus and the C terminuses of SLAC1 inhibited KAT1, but the inhibition by the N terminus was stronger. The C terminus was essential for the inhibition of KAT1 by SLAC1. Furthermore, drought stress strongly up-regulated the expression of SLAC1 and SLAH3 in Arabidopsis guard cells, and the over-expression of wild type and truncated SLAC1 dramatically impaired K+in currents of guard cells and light-induced stomatal opening. Additionally, the inhibition of KAT1 by SLAC1 and KC1 only partially overlapped, suggesting that SLAC1 and KC1 inhibited K+in channels using different molecular mechanisms. Taken together, we discovered a novel regulatory mechanism for stomatal movement, in which singling pathways for stomatal closure and opening are directly coupled together by protein-protein interaction between SLAC1/SLAH3 and KAT1 in Arabidopsis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Guard cell SLAC1‐type anion channels mediate flagellin‐induced stomatal closure

During infection plants recognize microbe-associated molecular patterns (MAMPs), and this leads to stomatal closure. This study analyzes the molecular mechanisms underlying this MAMP response and its interrelation with ABA signaling. Stomata in intact Arabidopsis thaliana plants were stimulated with the bacterial MAMP flg22, or the stress hormone ABA, by using the noninvasive nanoinfusion techn...

متن کامل

Systems dynamic modeling of a guard cell Cl- channel mutant uncovers an emergent homeostatic network regulating stomatal transpiration.

Stomata account for much of the 70% of global water usage associated with agriculture and have a profound impact on the water and carbon cycles of the world. Stomata have long been modeled mathematically, but until now, no systems analysis of a plant cell has yielded detail sufficient to guide phenotypic and mutational analysis. Here, we demonstrate the predictive power of a systems dynamic mod...

متن کامل

Expression of a Cs(+)-resistant guard cell K+ channel confers Cs(+)-resistant, light-induced stomatal opening in transgenic arabidopsis.

Inward-rectifying K+ (K+in) channels in the guard cell plasma membrane have been suggested to function as a major pathway for K+ influx into guard cells during stomatal opening. When K+in channels were blocked with external Cs+ in wild-type Arabidopsis guard cells, light-induced stomatal opening was reduced. Transgenic Arabidopsis plants were generated that expressed a mutant of the guard cell ...

متن کامل

Expression of a Cs+-Resistant Guard Cell K+ Channel Confers Cs+-Resistant, Light-lnduced Stomatal Opening in Transgenic Arabidopsis

Inward-rectifying K+ (K+in) channels in the guard cell plasma membrane have been suggested to function as a major pathway for K+ influx into guard cells during stomatal opening. When K+, channels were blocked with external Cs+ in wild-type Arabidopsis guard cells, light-induced stomatal opening was reduced. Transgenic Arabidopsis plants were generated that expressed a mutant of the guard cell K...

متن کامل

Ion channels in plants.

Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره   شماره 

صفحات  -

تاریخ انتشار 2016